cubes d'unité 2,3, 7 et 8: quelle démonstration?

Voir le sujet précédent Voir le sujet suivant Aller en bas

cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par dandelion le Dim 11 Aoû 2013 - 18:14

J'ai promis à ma fille de lui donner un livre si elle savait toutes ses tables jusqu'à dix. Pour une raison que j'ignore, elle a choisi de les écrire puis de noter les cubes des dix premiers chiffres. Elle a ensuite demandé pourquoi certains ne finissaient pas par la même unité et observé qu'il y avait un rapport avec dix (3 et 7 font dix, les unités de leurs cubes font dix, de même pour deux et huit). J'ai trouvé sur internet un site expliquant qu'il les cubes d'unité , 3, 7 et 8 avaient pour unité le complément à 10, mais existe-t-il une démonstration?

dandelion
Grand sage


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par mathmax le Dim 11 Aoû 2013 - 18:35

Je n'ai rien de très satisfaisant, mais on peut montrer que, si le chiffre des unités d'un nombre x est a, alors le chiffre des unités de x^3 est le même que le chiffre des unités de a^3 ( pour cela, observer que x=10*n+a, et développer x^3). Ensuite, regarder le chiffre des unités de 2^3, 3^3, etc.
Remarque : La propriété est vraie pour tous les chiffres sauf 4 et 9, qui sont des carrés.

_________________
« Les machines un jour pourront résoudre tous les problèmes, mais jamais aucune d'entre elles ne pourra en poser un !  »
    Albert Einstein

mathmax
Fidèle du forum


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par dandelion le Dim 11 Aoû 2013 - 18:44

Merci! Ma fille entre en cm1 mais elle pose souvent des questions difficiles (en même temps, j'apprends des choses).

dandelion
Grand sage


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par mathmax le Dim 11 Aoû 2013 - 19:01

Si elle est en CM1, développer (10n+a)^3 n'est pas une idée pertinente !

Si elle est demandeuse, tu peux essayer de lui montrer sur des exemples de nombres à deux chiffres, en posant les multiplications, que le chiffre des unités "viendra" forcément de a (on sait poser des multiplications en fin de CE2 ?).

C'est bien qu'elle se pose des questions sur les chiffres, cela prouve sans doute qu'ils ont une vie dans son cerveau, elle fera peut-être une thèse d'arithmétique plus tard !

Je me rappelle que ma fille m'avait dit : "Je n'ai jamais rencontré 13 ni 17 dans mes tables, c'est parce qu'on ne les a pas toutes apprises heu? " "Non ma chérie, c'est parce que ce sont des nombres premiers  Very Happy !

_________________
« Les machines un jour pourront résoudre tous les problèmes, mais jamais aucune d'entre elles ne pourra en poser un !  »
    Albert Einstein

mathmax
Fidèle du forum


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par dandelion le Dim 11 Aoû 2013 - 19:15

Oui, oui, on sait poser des multiplications en fin de CE2. Avant on abordait aussi la division en CE2 il me semble. En fait on fait pas mal de choses en primaire, fractions, nombres décimaux, géométrie, c'est assez riche et intéressant.

dandelion
Grand sage


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par JPhMM le Dim 11 Aoû 2013 - 21:09

@dandelion a écrit:Merci! Ma fille entre en cm1 mais elle pose souvent des questions difficiles (en même temps, j'apprends des choses).
Merveilleuses questions chez une petite de cm1 veneration  Shocked 

Quelques idées :
2x2x2=(2x2)x2=(5-1)x2=10-2
3x3x3=(3x3)x3=(10-1)x3=30-3=20+(10-3)
5x5x5=(5x5)x5=(26-1)x5=130-5=120+(10-5)
7x7x7=(7x7)x7=(50-1)x7=350-7=340+(10-7)
8x8x8=(8x8)x8=(65-1)x8=520-8=510+(10-8)

Et

1x1x1=(1x1)x1=1x1=1
4x4x4=(4x4)x4=(15+1)x4=60+4
5x5x5=(5x5)x5=(24+1)x5=120+5
6x6x6=(6x6)x6=(35+1)x6=210+6
9x9x9=(9x9)x9=(80+1)x9=720+9

Remarquons aussi que les unités des cubes de 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9 sont 0, 1, 8, 7, 4, 5, 6, 3, 2 et 9 (les mêmes, donc, mais dans le désordre).

http://villemin.gerard.free.fr/aNombre/FORMATIO/Unite.htm#unite

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. D'ailleurs, il n'y a point de meilleur moyen pour mettre en vogue ou pour défendre des doctrines étranges et absurdes, que de les munir d'une légion de mots obscurs, douteux , et indéterminés. Ce qui pourtant rend ces retraites bien plus semblables à des cavernes de brigands ou à des tanières de renards qu'à des forteresses de généreux guerriers. Que s'il est malaisé d'en chasser ceux qui s'y réfugient, ce n'est pas à cause de la force de ces lieux-là, mais à cause des ronces, des épines et de l'obscurité des buissons dont ils sont environnés. Car la fausseté étant par elle-même incompatible avec l'esprit de l'homme, il n'y a que l'obscurité qui puisse servir de défense à ce qui est absurde. — John Locke

JPhMM
Demi-dieu


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par JPhMM le Dim 11 Aoû 2013 - 21:51

Les unités des puissances de quatre sont encore plus "drôles".

1^4 = 1
2^4 = 16
3^4 = 81
4^4 = 256
5^4 = 625
6^4 = 1296
7^4 = 2401
8^4 = 4096
9^4 = 6561

Razz  Razz  Razz


Dernière édition par JPhMM le Dim 11 Aoû 2013 - 21:54, édité 1 fois

_________________
Labyrinthe où l'admiration des ignorants et des idiots qui prennent pour savoir profond tout ce qu'ils n'entendent pas, les a retenus, bon gré malgré qu'ils en eussent. D'ailleurs, il n'y a point de meilleur moyen pour mettre en vogue ou pour défendre des doctrines étranges et absurdes, que de les munir d'une légion de mots obscurs, douteux , et indéterminés. Ce qui pourtant rend ces retraites bien plus semblables à des cavernes de brigands ou à des tanières de renards qu'à des forteresses de généreux guerriers. Que s'il est malaisé d'en chasser ceux qui s'y réfugient, ce n'est pas à cause de la force de ces lieux-là, mais à cause des ronces, des épines et de l'obscurité des buissons dont ils sont environnés. Car la fausseté étant par elle-même incompatible avec l'esprit de l'homme, il n'y a que l'obscurité qui puisse servir de défense à ce qui est absurde. — John Locke

JPhMM
Demi-dieu


Revenir en haut Aller en bas

Re: cubes d'unité 2,3, 7 et 8: quelle démonstration?

Message par Finrod le Dim 11 Aoû 2013 - 21:53

C'est lié au fait que 10=2 fois 5 ce qui permet d'avoir bcp de solutions à l'équation x^3 congru à +/- x modulo 10; dans certains cas cela vient du fait que x^2 est congru à -1 modulo 10 (ou 1) dans d'autres c'est -1 modulo 2 ou 5 et on multiplie respectivement par 5 ou 2 derrière pour revenir à du modulo 10.

Cela ne marche pas vraiment en base 8 mais fonctionne encore mieux en base 6 car 6=2 fois 3  

Base 8 : 1^3=1 / 2^3= 10 / 3^3 = 33 / 4^3 = 100 / 5^3 = 175 / 6^3= 324 / 7^3= 427 (marche pour 3, 5 et 7 car leurs carrés sont congrus à 1 modulo 8)
Base 6 : 1^3=1 / 2^3=12 / 3^3=43 / 4^3=144/ 5^3 = 325 (Marche tout le temps !  Alors que seul 5^2 est congru à 1 modulo 6)

Finrod
Expert


Revenir en haut Aller en bas

Voir le sujet précédent Voir le sujet suivant Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum