Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
VinZT
VinZT
Sage

[Maths EDS Tale] Amusons-nous en lisant le programme Empty [Maths EDS Tale] Amusons-nous en lisant le programme

par VinZT le Sam 12 Oct - 21:49
BO a écrit:
Pour cela, l’outil employé est l’inégalité de Bienaymé-Tchebychev dont l’idée fondamentale est mise en valeur : l’écart type d’une variable aléatoire X est l’unité naturelle pour étudier la dispersion de X autour de son espérance ; par construction, il est naturel d’observer des écarts de X à µ en deçà ou au-delà de σ. L’inégalité de Bienaymé-Tchebychev montre qu’en revanche des écarts de X à µ de quelques σ deviennent improbables. Ce résultat, d’une importance majeure en lui-même, permet de plus d’établir la loi des grands nombres, selon laquelle l’écart entre la moyenne d’un échantillon d’une variable aléatoire et l’espérance de cette variable ne dépasse une valeur donnée à l’avance qu’avec une probabilité qui tend vers zéro quand la taille de l’échantillon tend vers l’infini*.
Il est utile de faire remarquer aux élèves que le caractère universel de l’inégalité de Bienaymé-Tchebychev a pour contrepartie le fait qu’elle est loin d’être optimale : ainsi, elle montre qu’un écart à µ supérieur à 2σ est de probabilité inférieure ou égale à 1/4 alors que les élèves ont découvert par simulation que cette probabilité est souvent majorée par 0,05. En avoir conscience ne diminue pas l’intérêt théorique de l’inégalité de Bienaymé- Tchebychev, et permet de mettre en évidence des cas de raisonnement par conditions suffisantes, par exemple la recherche d’une taille d’échantillon pour majorer une probabilité.


Well well well … on parle bien d'enseigner cela à des élèves dont le calcul d'un discriminant pose déjà de redoutables problèmes ?

* bon exercice de respiration costo-diaphragmatique : énoncer cette phrase sans reprendre son souffle

_________________

« Il ne faut pas croire tout ce qu'on voit sur Internet » Victor Hugo.
« Le con ne perd jamais son temps. Il perd celui des autres. » Frédéric Dard
« Ne jamais faire le jour même ce que tu peux faire faire le lendemain par quelqu'un d'autre » Pierre Dac
« Je n'ai jamais lâché prise !» Claude François
« Un économiste est un expert qui saura demain pourquoi ce qu'il avait prédit hier ne s'est pas produit aujourd'hui. » Laurence J. Peter
gauvain31
gauvain31
Empereur

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par gauvain31 le Sam 12 Oct - 22:03
[Maths EDS Tale] Amusons-nous en lisant le programme Photof10
ZeSandman
ZeSandman
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par ZeSandman le Sam 12 Oct - 22:24
@VinZT a écrit:
BO a écrit:
Pour cela, l’outil employé est l’inégalité de Bienaymé-Tchebychev dont l’idée fondamentale est mise en valeur : l’écart type d’une variable aléatoire X est l’unité naturelle pour étudier la dispersion de X autour de son espérance ; par construction, il est naturel d’observer des écarts de X à µ en deçà ou au-delà de σ. L’inégalité de Bienaymé-Tchebychev montre qu’en revanche des écarts de X à µ de quelques σ deviennent improbables. Ce résultat, d’une importance majeure en lui-même, permet de plus d’établir la loi des grands nombres, selon laquelle l’écart entre la moyenne d’un échantillon d’une variable aléatoire et l’espérance de cette variable ne dépasse une valeur donnée à l’avance qu’avec une probabilité qui tend vers zéro quand la taille de l’échantillon tend vers l’infini*.
Il est utile de faire remarquer aux élèves que le caractère universel de l’inégalité de Bienaymé-Tchebychev a pour contrepartie le fait qu’elle est loin d’être optimale : ainsi, elle montre qu’un écart à µ supérieur à 2σ est de probabilité inférieure ou égale à 1/4 alors que les élèves ont découvert par simulation que cette probabilité est souvent majorée par 0,05. En avoir conscience ne diminue pas l’intérêt théorique de l’inégalité de Bienaymé- Tchebychev, et permet de mettre en évidence des cas de raisonnement par conditions suffisantes, par exemple la recherche d’une taille d’échantillon pour majorer une probabilité.


Well well well … on parle bien d'enseigner cela à des élèves dont le calcul d'un discriminant pose déjà de redoutables problèmes ?

* bon exercice de respiration costo-diaphragmatique : énoncer cette phrase sans reprendre son souffle

Inutile de s'inquiéter, tout cela te semblera bien naturel dès lors que tu auras été initié à l'enseignement de la compréhension.

_________________
Ce sont les rêves qui donnent au monde sa forme.
avatar
Badiste75
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Badiste75 le Sam 12 Oct - 22:39
Les élèves de Terminale... qui auront souhaité poursuivre les maths... seront excellents! Ou pas...
avatar
Ramanujan974
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Ramanujan974 le Dim 13 Oct - 4:20
Ils sont forts au ministère.
En 2 ans, on va passer de 90 % des élèves de lycée général qui faisaient des maths (S, ES, quelques L) à ..... ? 60 % ? 50 % ? 30 ?
On fait les paris ?
Mathador
Mathador
Esprit éclairé

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Mathador le Dim 13 Oct - 4:33
C'était le but. Rappelons que l'agrégation externe de maths a fait le plein pour la dernière fois en 2012, sans même parler du naufrage que constitue le CAPES.
Bien sûr, plutôt que d'écarter du lycée les « élèves » qui n'ont rien à y faire et ainsi économiser des postes, on préfère réformer sa structure au « profit » des matières où on galère un peu moins à recruter.

_________________
« Se qualche notte tu sogni che,
Sei tra le braccia di un Mathador,
Non indagare la colpa è del flamenco » (Dalida, Flamenco)
Simeon
Simeon
Niveau 8

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Simeon le Dim 13 Oct - 9:46
Ca ne me choque pas tant que ça. Mais je ne doute pas que ce chapitre sera un des fers de lance de la reconquête du mois de juin.
InternetNeverForgets
InternetNeverForgets
Niveau 1

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par InternetNeverForgets le Dim 13 Oct - 11:01
@Ramanujan974 a écrit:Ils sont forts au ministère.
En 2 ans, on va passer de 90 % des élèves de lycée général qui faisaient des maths (S, ES, quelques L) à ..... ? 60 % ? 50 % ? 30 ?
On fait les paris ?

Le nombre baissera forcement un peu, mais pas tant que cela. Pour deux raisons. Premièrement car les Maths resteront le plus gros levier de sélection pour le supérieur, et de loin. La moindre école de commerce demandera cet enseignement de spécialité ( paix aux âmes des sacrifiés de la réforme qui souhaitaient faire économie avec SES/ histoire/anglais). Les faibles/moyens prendront ensuite Maths complémentaire en Terminale.
Deuxièmement, et c'est lié, un énorme business est en train de se mettre en place au niveau des écoles payantes / prépas etc... ( Tarifs personnalisés/ obligation d'une remise à niveau facturée en fonction des résultats de cette spé ). C'est malheureux, mais ils peuvent se le permettre et le savent.
Prezbo
Prezbo
Fidèle du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Prezbo le Dim 13 Oct - 11:18
@InternetNeverForgets a écrit:

Le nombre baissera forcement un peu, mais pas tant que cela. Pour deux raisons. Premièrement car les Maths resteront le plus gros levier de sélection pour le supérieur, et de loin. La moindre école de commerce demandera cet enseignement de spécialité ( paix aux âmes des sacrifiés de la réforme qui souhaitaient faire économie avec SES/ histoire/anglais). Les faibles/moyens prendront ensuite Maths complémentaire en Terminale.
Deuxièmement, et c'est lié, un énorme business est en train de se mettre en place au niveau des écoles payantes / prépas etc... ( Tarifs personnalisés/ obligation d'une remise à niveau facturée en fonction des résultats de cette spé ). C'est malheureux, mais ils peuvent se le permettre et le savent.

Oui, la pression de l'orientation fera que la plupart des élèves continueront les maths. Ceux qui sont vraiment à l'agonie en spé maths en première prendront l'option maths complémentaires en terminale, qui est très exactement faite pour ça.

Et les IPR continueront à lancer des injonctions contradictoire, soyez ambitieux en traitant les programme de seconde et de première comme vous y invite le rapport Villani-Torossian, mais demerdez-vous pour ne pas décourager les élèves avec des notes trop basses.
Proton
Proton
Niveau 9

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Proton le Dim 13 Oct - 11:30
Si on pouvait déjà, au collège, remettre des heures de cours  de maths (4h mini en 3e ! Pourquoi le français a été récemment augmenté mais pas les maths ?) et les anciens programmes ... peut-être que la catastrophe serait moins grave ? Je ne comprends toujours pas pourquoi il n'y a pas d'instruction pour le collège avec : davantage de calcul littéral, davantage d'arithmétique (allo le pgcd ?), davantage de géométrie et la suppression des tâches complexes à la mords-moi-le-nœud.
Non, à la place de ça, les derniers changements ont été sur l'enseignement des ratios ... cheers
neo-fit
neo-fit
Niveau 9

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par neo-fit le Dim 13 Oct - 11:59
@Prezbo a écrit:

Et les IPR continueront à lancer des injonctions contradictoire, soyez ambitieux en traitant les programme de seconde et de première comme vous y invite le rapport Villani-Torossian, mais demerdez-vous pour ne pas décourager les élèves avec des notes trop basses.
En un mot fétiche : différencier. [Maths EDS Tale] Amusons-nous en lisant le programme 1665347707

@Proton a écrit:
Non, à la place de ça, les derniers changements ont été sur l'enseignement des ratios ... cheers
L’enseignement des ratios, c’est pour être pisa compatible, non ?
avatar
Badiste75
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Badiste75 le Dim 13 Oct - 12:16
Je crois qu’il n’y a pas à jalouser une augmentation du volume horaire du français, bien au contraire. C’est pour moi la principale raison de l’effondrement du niveau général et en maths en particulier.
lisontine
lisontine
Niveau 9

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par lisontine le Dim 13 Oct - 12:23
@Proton a écrit:Si on pouvait déjà, au collège, remettre des heures de cours  de maths (4h mini en 3e ! Pourquoi le français a été récemment augmenté mais pas les maths ?) et les anciens programmes ... peut-être que la catastrophe serait moins grave ? Je ne comprends toujours pas pourquoi il n'y a pas d'instruction pour le collège avec : davantage de calcul littéral, davantage d'arithmétique (allo le pgcd ?), davantage de géométrie et la suppression des tâches complexes à la mords-moi-le-nœud.
Non, à la place de ça, les derniers changements ont été sur l'enseignement des ratios ... cheers

Ben non en français en 3e la dernière réforme nous a fait perdre 1/2 heure. C'est d'ailleurs à cause de ça que maintenant on a une classe en plus dans nos services ou des classes partagées. Je ne sais pas d'où vous tenez qu'on a augmenté les horaires.
Simeon
Simeon
Niveau 8

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Simeon le Dim 13 Oct - 14:16
@InternetNeverForgets a écrit:

Le nombre baissera forcement un peu, mais pas tant que cela. Pour deux raisons. Premièrement car les Maths resteront le plus gros levier de sélection pour le supérieur, et de loin. La moindre école de commerce demandera cet enseignement de spécialité ( paix aux âmes des sacrifiés de la réforme qui souhaitaient faire économie avec SES/ histoire/anglais). Les faibles/moyens prendront ensuite Maths complémentaire en Terminale.
Deuxièmement, et c'est lié, un énorme business est en train de se mettre en place au niveau des écoles payantes / prépas etc... ( Tarifs personnalisés/ obligation d'une remise à niveau facturée en fonction des résultats de cette spé ). C'est malheureux, mais ils peuvent se le permettre et le savent.

Je ne compte pas les élèves de ES avec un niveau extrêmement faible (parfois insuffisant pour l'obtention du bac) que j'ai vu accepté en "école de commerce", je doute que ces écoles soient vraiment regardantes sur la question de la spé math.

Les prépas EC demanderont la spé math, mais ça représente 20000 étudiants par an, ce n'est pas énorme.
VinZT
VinZT
Sage

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par VinZT le Dim 13 Oct - 15:14
Oui, hormis les prépas classiques (qui ne sont d'ailleurs pas si regardantes que cela sur les notes, surtout les prépas dites « de proximité »), le business du supérieur trouvera de quoi rebondir et sélectionner. Et si ces écoles ont besoin de maths, elles formeront elle-mêmes les élèves ou exigeront des remises à niveau via certifications (payantes bien sûr).
Avec la réforme, tout est en place pour que le bac devienne à peu près aussi utile, pertinent et « certifiant » que l'actuel brevet des collèges.

_________________

« Il ne faut pas croire tout ce qu'on voit sur Internet » Victor Hugo.
« Le con ne perd jamais son temps. Il perd celui des autres. » Frédéric Dard
« Ne jamais faire le jour même ce que tu peux faire faire le lendemain par quelqu'un d'autre » Pierre Dac
« Je n'ai jamais lâché prise !» Claude François
« Un économiste est un expert qui saura demain pourquoi ce qu'il avait prédit hier ne s'est pas produit aujourd'hui. » Laurence J. Peter
InternetNeverForgets
InternetNeverForgets
Niveau 1

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par InternetNeverForgets le Dim 13 Oct - 15:32
@Simeon a écrit:

Je ne compte pas les élèves de ES avec un niveau extrêmement faible (parfois insuffisant pour l'obtention du bac) que j'ai vu accepté en "école de commerce", je doute que ces écoles soient vraiment regardantes sur la question de la spé math.

Les prépas EC demanderont la spé math, mais ça représente 20000 étudiants par an, ce n'est pas énorme.

Les écoles étaient peu regardantes, en effet. Mais les élèves, bien que totalement à la ramasse, avaient quand même continué les Maths pendant 2 ans. Il ya un fossé avec un élève déjà totalement perdu en seconde qui aura abandonné les Maths pendant 2 ans. Elles ne veulent pas prendre de risque avec ces nouveaux profils, qui leur apporteront plus de problèmes que de gains potentiels.

Pour être très clair, voici leur position actuelle : elles souhaitent des élèves ayant pris la spé Maths ( ce qui leur permet de faire le tri très facilement), et comptent sur l'exigence du programme ainsi que sur les enseignants pour faire chuter les moyennes, afin d'imposer des modules de remise à niveau payants ( hors côut de l'école).

En résumé, vous suivez les programmes et mettez en place des évaluations notées dont le niveau est en accord avec celui-ci, de sorte que la plupart des ES se ramassent, alors vous jouerez le jeu de ce nouveau business. J'ai lu sur un autre post qu'en procédant ainsi, certains se sentaient " rebelles" et pensaient ne pas jouer le jeu du ministère. C'est en fait tout le contraire. C'est exactement ce qui est attendu.

La solution que j'ai adoptée en urgence cette année : Je propose une première évaluation commune et j'observe les résultats. Je classe plus ou moins grossièrement ensuite les élèves en S/ES grâce aux spécialités choisies. Par la suite, mes évaluations seront différenciées, avec un niveau d'exigence beaucoup moins élevé pour les " ES " .  
Je peux me permettre ainsi de maintenir un niveau qui me semble correct en classe ( trop haut pour les ES bien souvent) , sans pour autant les pénaliser sur les évaluations quant à leur orientation. Et cela ne me demande pas beaucoup de travail supplémentaire. La plupart de mes collègues commencent à procéder ainsi aussi.


Dernière édition par InternetNeverForgets le Dim 13 Oct - 15:35, édité 2 fois
Anaxagore
Anaxagore
Empereur

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Anaxagore le Dim 13 Oct - 15:34
C'est leur ignorance qui va les pénaliser, au-delà d'une éventuelle note.

_________________
"De même que notre esprit devient plus fort grâce à la communication avec les esprits vigoureux et raisonnables, de même on ne peut pas dire combien il s'abâtardit par le commerce continuel et la fréquentation que nous avons des esprits bas et maladifs." Montaigne

"Woland fit un signe de la main, et Jérusalem s'éteignit."

"On déclame contre les passions sans songer que c'est à leur flambeau que la philosophie allume le sien." Sade
Proton
Proton
Niveau 9

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Proton le Dim 13 Oct - 15:56
En fait je me trompe, j'étais persuadé que le volume horaire en français pour les 3e avait augmenté de 30 min par semaine à cause de ce fil http://www.neoprofs.org/t120143-francais-augmentation-de-l-horaire-eleve-en-3e ...

avatar
Badiste75
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Badiste75 le Dim 13 Oct - 16:02
Je différencie aussi un exercice par grosse évaluation. Mais je n’accorde pas le nombre de points maximum à l’exercice dit « facile ». S’ils râlent, vu que je laisse le choix, je leur réponds qu’il suffit de prendre le difficile. J’entends déjà les réponses : « mais monsieur il était impossible celui là! »
BR
BR
Niveau 7

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par BR le Dim 13 Oct - 16:21
@VinZT a écrit:
BO a écrit:
Pour cela, l’outil employé est l’inégalité de Bienaymé-Tchebychev dont l’idée fondamentale est mise en valeur : l’écart type d’une variable aléatoire X est l’unité naturelle pour étudier la dispersion de X autour de son espérance ; par construction, il est naturel d’observer des écarts de X à µ en deçà ou au-delà de σ. L’inégalité de Bienaymé-Tchebychev montre qu’en revanche des écarts de X à µ de quelques σ deviennent improbables. Ce résultat, d’une importance majeure en lui-même, permet de plus d’établir la loi des grands nombres, selon laquelle l’écart entre la moyenne d’un échantillon d’une variable aléatoire et l’espérance de cette variable ne dépasse une valeur donnée à l’avance qu’avec une probabilité qui tend vers zéro quand la taille de l’échantillon tend vers l’infini*.
Il est utile de faire remarquer aux élèves que le caractère universel de l’inégalité de Bienaymé-Tchebychev a pour contrepartie le fait qu’elle est loin d’être optimale : ainsi, elle montre qu’un écart à µ supérieur à 2σ est de probabilité inférieure ou égale à 1/4 alors que les élèves ont découvert par simulation que cette probabilité est souvent majorée par 0,05. En avoir conscience ne diminue pas l’intérêt théorique de l’inégalité de Bienaymé- Tchebychev, et permet de mettre en évidence des cas de raisonnement par conditions suffisantes, par exemple la recherche d’une taille d’échantillon pour majorer une probabilité.

Je suis surpris et triste de lire le message de VinZT.

Le nouveau programme introduit les probabilités à un niveau élémentaire, où on peut justifier explicitement tous les résultats au programme, ce qui constitue à mes yeux un progrès considérable par rapport au programme précédent qui introduisait les variables continues en réduisant à néant la théorie des primitives, puisque l'intégration par parties avait été rayée du programme. Ainsi, en 2012, calculer l'espérance de la loi exponentielle (l'intégrale sur [0,+oo[ de t.exp(-t) ) était considérée comme une démonstration ayant valeur de modèle, susceptible de faire l'objet d'une restitution organisée de connaissance. Comme la démonstration repose sur l'intégration par partie (hors programme), les professeurs ont sans doute majoritairement parachuté une formule sans explication, ce qui va à l'encontre d'une démarche mathématique saine... De même, l'étude de la loi normale et des intervalles de confiance à 95% ne relevait pas vraiment des Mathématiques, faute de disposer des bases nécessaires pour justifier les concepts manipulés, et relevait du presse bouton sans réflexion.

L'introduction de l'inégalité de Bienaymé-Tchebychev dans le nouveau programme permet d'introduire un résultat relativement simple à justifier tout en permettant de démontrer la loi faible des grand nombres.

Le programme de probabilité est à mon avis beaucoup plus cohérent et accessible après la réforme.

Les auteurs des programmes ont ajouté des commentaires de nature historique et méthodologique : il me semble qu'ils s'agit de repères adressés au professeurs, qui n'ont pas nécessairement vocation à être explicités aux élèves : il est utile de faire remarquer est une formulation un peu différente de il conviendra de faire remarquer....

Il est un peu préoccupant que les professeurs auquel s'adressent ces commentaires s'empressent de les ridiculiser, au lieu de remercier les auteurs du programme pour avoir explicité leurs intentions et les liens qu'il convient d'établir entre les notions au programme. La prochaine fois, si le programme se contente de lister les contenus et les attendus sans plus d'explications, ne vous plaignez pas de ne pas en comprendre la logique.

@VinZT a écrit:Well well well … on parle bien d'enseigner cela à des élèves dont le calcul d'un discriminant pose déjà de redoutables problèmes ?

* bon exercice de respiration costo-diaphragmatique : énoncer cette phrase sans reprendre son souffle

Comparons les programmes avant réforme et après réforme : les programmes sont ils plus cohérents ? À mon avis, oui. Sont ils plus exigeants ? Sans doute (mais cela se discute). Plus accessibles ? À mon avis, également oui.

VinZT se désole des élèves qui souffre au moindre calcul de discriminant. Ces élèves là n'ont sans doute aucune chance de suivre le nouveau programme de Terminale. Avaient ils eu la moindre chance de suivre l'ancien programme (qu'il s'agisse du programme de S ou de ES, d'ailleurs) ?
Anaxagore
Anaxagore
Empereur

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Anaxagore le Dim 13 Oct - 16:32
Je plvssoie.

_________________
"De même que notre esprit devient plus fort grâce à la communication avec les esprits vigoureux et raisonnables, de même on ne peut pas dire combien il s'abâtardit par le commerce continuel et la fréquentation que nous avons des esprits bas et maladifs." Montaigne

"Woland fit un signe de la main, et Jérusalem s'éteignit."

"On déclame contre les passions sans songer que c'est à leur flambeau que la philosophie allume le sien." Sade
VinZT
VinZT
Sage

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par VinZT le Dim 13 Oct - 17:35
Oui, enfin, je mettais surtout l'accent sur les expressions « naturels » et « les élèves auront découvert par simulation » qui me semblent relever d'un optimisme béat.
Pour le reste, je suis assez d'accord que ces programmes sont plus cohérents que les anciens, que je ne défends nullement. Reste que leur adéquation avec les élèves que j'ai en face de moi demeure problématique. J'ai la faiblesse de penser qu'un programme doit concerner tous les élèves, et pas seulement ceux des lycées d'élite, ce qui n'exclut pas une certaine forme d'exigence, bien entendu. Le dosage n'est pas évident, j'en suis bien conscient.

_________________

« Il ne faut pas croire tout ce qu'on voit sur Internet » Victor Hugo.
« Le con ne perd jamais son temps. Il perd celui des autres. » Frédéric Dard
« Ne jamais faire le jour même ce que tu peux faire faire le lendemain par quelqu'un d'autre » Pierre Dac
« Je n'ai jamais lâché prise !» Claude François
« Un économiste est un expert qui saura demain pourquoi ce qu'il avait prédit hier ne s'est pas produit aujourd'hui. » Laurence J. Peter
avatar
Badiste75
Habitué du forum

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par Badiste75 le Dim 13 Oct - 17:37
Je partage l’avis de VinZT. C’est bien joli de remettre de la cohérence. Encore faudrait-il que les moyens suivent et que les élèves aient des acquis plus solides.
BR
BR
Niveau 7

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par BR le Dim 13 Oct - 18:10
@VinZT a écrit:Oui, enfin, je  mettais surtout l'accent sur les expressions « naturels » et « les élèves auront découvert par simulation » qui me semblent relever d'un optimisme béat.
Je suis en désaccord avec toi sur l'adjectif naturel : d'un point de vue mathématique, l'écart type est bien un indicateur de dispersion; l'utilisation de l'adjectif naturel est tout à fait approprié.
Par contre, tu as tout à fait raison qu'écrire :
@VinZT a écrit:Les élèves ont découvert par simulation que la probabilité [d'un écart à mu supérieur à 2 sigma] est souvent majorée par 0,05
relève d'un optimisme béat.
@VinZT a écrit:[L'adéquation des programmes] avec les élèves que j'ai en face de moi demeure problématique. J'ai la faiblesse de penser qu'un programme doit concerner tous les élèves, et pas seulement ceux des lycées d'élite, ce qui n'exclut pas une certaine forme d'exigence, bien entendu. Le dosage n'est pas évident, j'en suis bien conscient.
La critique est aisée et l'art est difficile. Quels que soient les choix réalisés, certains jugeront les programmes exagérément ambitieux, d'autres, au contraire, liront dans les programmes le signe d'une décadence et la mort programmée de l'école.

Personnellement, ils me semblent beaucoup plus cohérents et accessibles que les programmes précédents, ce qui est un incontestable progrès.

Je suis surpris par contre qu'on ne relève pas plus souvent que le premier problème de la réforme du Lycée, ce n'est pas celui des contenus, mais celui des horaires. 4 heures de Spécialité Mathématiques en Première est tout à fait insuffisant pour aborder de façon approfondie les chapitres au programme. La réforme du Lycée aurait pu permettre de passer à un horaire plus conséquent, cela n'a pas été le cas. Pire : le fait d'avoir imposé le même horaire pour toutes les Spécialités en Première et en Terminale verrouille durablement toute évolution : si on accorde une heure de plus en Maths, pourquoi la SVT, NSI, la Physique et autres Spécialités resteraient elles à 4 heures ?

Cédric Villani et de Charles Torossian sont restés d'un silence assourdissant sur le sujet lors de la réforme du Lycée, alors même que leur rapport proposait de créer une filière scientifique avec 7 heures de Mathématiques en Première, 9 en Terminale. Ils ont eu un petit os à ronger avec les 3 heures de Maths Expertes au lieu de 2 auparavant, ce qui leur a permis d'avaler la pilule sans trop perdre la face en prétendant qu'il y a désormais 9 heures de Maths en Terminale.

Même silence du coté de l'APMEP, qui a choisi inexplicablement de se battre pour 2 heures de Mathématiques dans le tronc commun. Compte tenu du volume horaire supplémentaire à envisager, c'est un combat perdu d'avance. Se battre pour un horaire de 6 heures en Spécialité de première (quitte à accepter 5 heures) serait à mon avis plus réaliste et plus efficace.
VinZT
VinZT
Sage

[Maths EDS Tale] Amusons-nous en lisant le programme Empty Re: [Maths EDS Tale] Amusons-nous en lisant le programme

par VinZT le Dim 13 Oct - 18:47
Ajoutons également qu'appeler spécialité de terminale un enseignement qui n'aura d'impact que sur les 2/3 de l'année de terminale relève quand même de l'escroquerie.

_________________

« Il ne faut pas croire tout ce qu'on voit sur Internet » Victor Hugo.
« Le con ne perd jamais son temps. Il perd celui des autres. » Frédéric Dard
« Ne jamais faire le jour même ce que tu peux faire faire le lendemain par quelqu'un d'autre » Pierre Dac
« Je n'ai jamais lâché prise !» Claude François
« Un économiste est un expert qui saura demain pourquoi ce qu'il avait prédit hier ne s'est pas produit aujourd'hui. » Laurence J. Peter
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum